Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation.
نویسندگان
چکیده
The effect of temperature and calcium ions on the denaturation of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been studied using calorimetry. It was found that thermal inactivation of BHA is irreversible and that calcium ions have a significant effect on stability. Thus an apparent denaturation temperature ( T (d)) of 83 degrees C in the presence of excess calcium ions was observed, whereas T (d) decreased to 48 degrees C when calcium was removed. The difference in thermal stability with and without calcium ions has been used to develop an isothermal titration calorimetric (ITC) procedure that allows simultaneous determination of kinetic parameters and enthalpy changes of the denaturation of calcium-depleted BHA. An activation energy E (A) of 101 kJ/mol was found for the denaturation of calcium-depleted BHA. The results support a kinetic denaturation mechanism where the calcium-depleted amylase denatures irreversibly at low temperature and if calcium ions are in excess, the amylase denatures irreversibly at high temperatures. The two denaturation reactions are coupled with the calcium-binding equilibrium between calcium-bound and -depleted amylase. A combination of the kinetic denaturation results and calcium-binding constants, determined by isothermal titration calorimetry, has been used to estimate kinetic stability, expressed in terms of the half-life of BHA as a function of temperature and free-calcium-ion concentration. Thus it is estimated that the apparent E (A) can be increased to approx. 123 kJ/mol by increasing the free-calcium concentration.
منابع مشابه
Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase.
The irreversible thermal inactivation of Bacillus licheniformis alpha-amylase was studied. A two-step behaviour in the irreversible denaturation process was found. Our experimental results are consistent only with the two-step model and rule out the two-isoenzyme one. They suggest that the deactivation mechanism involves the existence of a temperature-dependent intermediate form. Therefore the ...
متن کاملBacillus Amyloliquefaciens Alpha-amylase Inhibition by Organic Solvents: A Study on Methanol, Ethanol and Propanol
Alpha-amylase is widely used as an industrial enzyme, and a therapeutic target for which inhibitors are designed. Organic solvents are used to dissolve various compounds that would be studied as moderators of alpha-amylases, but they could themselves affect enzyme activity and stability. Methanol, ethanol and propanol are simple alcohols that may be commonly used to this end, and their effect h...
متن کاملStability parameters for one-step mechanism of irreversible protein denaturation: a method based on nonlinear regression of calorimetric peaks with nonzero deltaCp.
Thermal transitions of many proteins have been found to be calorimetrically irreversible and scan-rate dependent. Calorimetric determinations of stability parameters of proteins which unfold irreversibly according to a first-order kinetic scheme have been reported. These methods require the approximation that the increase in heat capacity upon denaturation deltaCp is zero. A method to obtain th...
متن کاملStructure of a Bacillus halmapalus family 13 alpha-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 A resolution.
The enzymatic digestion of starch by alpha-amylases is one of the key biotechnological reactions of recent times. In the search for industrial biocatalysts, the family GH13 alpha-amylase BHA from Bacillus halmapalus has been cloned and expressed. The three-dimensional structure at 2.1 A resolution has been determined in complex with the (pseudo)tetrasaccharide inhibitor acarbose. Acarbose is fo...
متن کاملCrystal structure of calcium-free alpha-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites.
The crystal structure of a calcium-free alpha-amylase (AmyK38) from Bacillus sp. strain KSM-K38, which resists chelating reagents and chemical oxidants, has been determined by the molecular replacement method and refined to a crystallographic R-factor of 19.9% (R-free of 23.2%) at 2.13-A resolution. The main chain folding of AmyK38 is almost homologous to that of Bacillus licheniformis alpha-am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 373 Pt 2 شماره
صفحات -
تاریخ انتشار 2003